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Results are presented of a numerical solution of the Korteweg-de Vries-Burgers equation 

that describes the propagation and establishment process for a stationary structure to a 
shock wave in a gas-liquid medium. Data are obtained on the time for the establishment 

of a stationary structure of a shock wave, propagation velocity, and amplitude oscillations 
in the front of the shock wave. Experiments are discussed on the basis of the results ob- 

tained for the study of shock waves in a liquid containing gas bubbles. 

1. C o m p r e s s i o n  waves  of finite ampli tude in g a s - l i q u i d  media  have been exper imenta l ly  and theo-  
re t ica l ly  inves t iga ted  [1-12]. 

I t  has  been shown [5, 8] that it is  poss ib le  fo r  a weak shock wave pos se s s ing  osc i l l a to ry  s t ruc tu re  to 
fo rm in a liquid with gas bubbles, given specif ied re la t ionships  between the effect ive mix tu re  v iscosi ty ,  in-  
tens i ty  of the d is turbance ,  and bubble radius .  The case  of s t rong shock waves  in such a medium has a lso  
been cons idered  [10]. 

The osc i l l a to ry  s t ruc tu re  of a standing shock wave was calculated in [6] and [8] on the basis of equa-  
t ions for  a homogeneous s ingle-ve loc i ty  model  a s suming  an adiabat ic  p r o c e s s  within the suspension bub- 
bles,  and r e su l t s  have been p re sen t ed  [11] of a calculation of a standing wave based on a two-veloc i ty  model  
of the medium a s s um i ng  a nonpolytropic p r oce s s .  

It  has been demons t r a t ed  [4, 5] that the evolution of tongwave d is turbances  in a liquid containing gas  
bubbles can be examined on the basis  of the K o r t e w e g - d e  V r i e s - B u r g e r s  equation, which is  a model equa-  
tion for  descr ib ing  the propagat ion p r o c e s s  for  waves  of finite ampli tude in a medium with weak d i s p e r -  
sion and diss ipat ion [13], 

u, + uu.~, - -  ~1 Uxx + [~ uxxx  = 0 (1.1) 

Here  t i s  t ime,  x is a coordinate ,  u is  the veloci ty  d is turbance of the medium,  ~? is  the coefficient of 
effect ive v i scos i ty  of the medium,  fl=Roaco/.6 a 0 ( 1 - a o ) ,  (fl c02) -1/2 is  d i spers ion  length, R 0 is  the radius  
of a s table bubble, c o = pl /2  [ p l a  ~ (1_ ~0) ]-1/2 is  a low-f requency  approximat ion  of the speed of sound in 
the g a s - l i q u i d  medium,  p~ is  liquid density,  and ao is  the init ial  gas  content of the mix tu re  by volume.  

Equation (1.1) was wri t ten  in a f r a m e  of r e f e r ence  moving at  veloci ty  c o. When diss ipat ion is  due 
sole ly  to v iscous  l o s s e s  at  the 'bubble- l iquid  boundary, the coefficient of effect ive v i scos i ty  of the m i x -  
tu re  has the f o r m  

q = 2 v / 3  ao (1.2) 

where  u is  the k inemat ic  v i scos i ty  coeff icient  of the liquid. A r e m a r k  regard ing  the coeff icient  in (1.2) can 
be found in [9]; that  i s ,  the actual  d iss ipat ion coefficient  in the mix tu re  exceeds  by a fac tor  of 20 the coef-  
f icient  calculated using Eq. (1.2). The coefficient  tl can be calculated m o r e  p r e c i s e l y  preceding  on the 
basis  of r e su l t s  of [14T: 

~1 =6~)Bo  2 / 6 a  0 i -  ao) 
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w h e r e  6 i s  the  d a m p i n g  d e c r e m e n t ,  wh ich  m a y  be r e p r e s e n t e d  in  the  f o r m  
of a s u m  of d e c r e m e n t s  due to t h e r m a l  d i s s i p a t i o n ,  a c o u s t i c  r a d i a t i o n  
l o s s e s ,  and  l o s s e s  c a l c u l a t e d  in  [14]; ~ i s  the  r i p p l e  f r e q u e n c y  of a bub -  
ble ,  wh ich  f o r  w e a k  s h o c k  w a v e s  i s  c l o s e  to  the r e s o n a n c e  f r e q u e n c y  of 
the  bubble  c a l c u l a t e d  u s i n g  the  e q u i l i b r i u m  vMues  of p r e s s u r e  and r a d i u s .  

The c o n t r i b u t i o n  to d i s s i p a t i o n  of  l o s s e s  c a u s e d  by t h e r m a l  e f f ec t s  

and  r a d i a t i o n  m a y  be s u b s t a n t i a l .  

The  s t a t i o n a r y  so lu t i ons  of Eq. (1.1) of the  f o r m  u = u ( x - V t ) ,  which  
d e s c r i b e s  the  s t r u c t u r e  of the f ron t ,  a r e  ob ta ined  by i n t e g r a t i n g  the o r d i -  

n a r y  d i f f e r e n t i a l  equa t ion  

[3u w - r  l u ' +  u ' ( u - -  V) = 0  (1.3) 

w h e r e  V = A u / 2 ,  Au be ing  the v e l o c i t y  d i s c o n t i n u i t y  in the  shock  wave .  

The existence criterion for shock waves with oscillatory structure, following Eq. (1.3), has the 

form [13] 

(2 ~A u)-~ 2 < I (1.4) 

The criterion (1.4) cannot hold in the course of the establishment of a standing front. The penetra- 
tion probability for a shock wave with oscillatory structure into a gas-liquid mixture has been confirmed 

experimentally [4, 6-8, i0, 12]. 

It has been proposed [Ii] that times somewhat greater than were realized in these experiments are 

required for a shock wave to attain a standing structure. 

In this work we shall investigate the process by which a shock wave is established and compare it to 

available experimental results. 

2. The process by which a shock wave is established was studied on the basis of the decay problem 

for an arbitrary discontinuity by means of a numerical integration of Eq. (i.i). 

The initial condition for Eq. (i.i) was selected in the form of a step function of the form 

u (x, 0) = u 0 m/sec, x ~ x 0 (2.1) 
u(x ,  0 ) - -  u o e x p [ - ( x - x o  "~ x > x  o 

The s lope  of the  d i s c o n t i n u i t y  f ron t  can be r e g u l a t e d  by v a r y i n g  the  p a r a m e t e r .  The c o o r d i n a t e s  and  
f o r m  of the  s t e p  func t ion  a r e  c o n n e c t e d  by  the b roken  l ine  in  F i g .  1. M o r e o v e r ,  n u m e r i c a l  e x p e r i m e n t s  

wi th  f in i te  i n i t i a l  d i s t r i b u t i o n s  of the  f o r m  

u (x, 0) = u0 exp [--  (x - -  xl) 2 ' el"], 0 ~ x ~ xl 

(x, O) = -  ,~o, ~1 < x ~ Xo (2.2) 
u (x, O) = u o exp [- -  (x - -  Xo)-' ,' e_,~l, x > xo 

w e r e  c a r r i e d  out.  

The  i n i t i a l  d i s t u r b a n c e  (2.1) a p p r o x i m a t e l y  c o r r e s p o n d s  to the  cond i t ions  of p r e v i o u s  e x p e r i m e n t s  
[8] and  the  d i s t r i b u t i o n  of  the  f o r m  (2.2), to  o t h e r  e x p e r i m e n t s  [4, 6, 7], w h e r e  the  h i g h - p r e s s u r e  c h a m b e r  

had  l i m i t e d  v o l u m e .  

The  d i s p e r s i o n  and d i s s i p a t i o n  c o e f f i c i e n t s  w e r e  ~ = t0  -4 m 3 / s e c  and ~ = 10 -~ m ~ / s e e .  T h e s e  v a l u e s  
of the  c o e f f i c i e n t s  r o u g h l y  c o r r e s p o n d  to the  cond i t ions  of p r e v i o u s  e x p e r i m e n t s  [4, 6-8]  (u 0 = 1 m / s e e ,  l = 

0.08 m,  l l  = 0.04 m,  and l 2 = 0.4 m) .  

The  r e s u l t s  of the  c a l c u l a t i o n  a r e  p r e s e n t e d  in d i m e n s i o n a l  f o r m  to f a c i l i t a t e  t h e i r  c o m p a r i s o n  wi th  

the  e x p e r i m e n t a l  r e s u l t s ,  

Equa t ion  (1.1) w a s  a p p r o x i m a t e d  by an e x p l i c i t  t h r e e - l a y e r  f i n i t e - d i f f e r e n c e  s c h e m e  of  s econd  o r d e r  
wi th  r e s p e c t  to c o o r d i n a t e  and t i m e .  The  i n t e g r a t i o n  s t ep  w a s  as  fo l lows:  f o r  c o o r d i n a t e ,  h = 0.01 m and 
fo r  t i m e ,  r = 0.8 �9 10 -'~ s ee .  

R e s u l t s  a r e  p r e s e n t e d  in F i g .  1 of a n u m e r i c a l  i n t e g r a t i o n  of Eq. (1.1) wi th  i n i t i a l  condi t ion  (2.1); the  
d i s t u r b a n c e  p r o f i l e  i s  d e p i c t e d  f o r  t = 2 s e e .  A s t and ing  shock  wave  wi th  o s c i l l a t o r y  s t r u c t u r e  was  e s t a b -  
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fished in about 1,2 see for a height of a step u 0 = 1 msec for these values -.JaAJ 
"'1[x ! of the parameters. The velocity of the standing shock wave in the frame 

q 5 of reference  moving at velocity c o was 0.5 u0, which agrees  with the r e -  
sults of an investigation of Eq. (1.3) [13, 15]. The distance x= (c0+0.5 u0)t 
in which a s tat ionary s t ructure  of the shock wave is established was m e a -  
sured to tens of mete r s .  

We can agree with [11] that only nonstat ionary shock waves have 
been investigated in all previous experiments .  

It is evident f rom the results  of a numerical  integration of Eq. (1.1) 
Fig. 4 that the oscillations appearing in the front of the shock wave in the course  

of the evolution of the initial discontinuity have higher amplitudes than at 
the moment  when the stat ionary profile is established. 

The oscil lat ions are  smoothed as the shock wave propagates,  and at the moment  when the s tat ionary 

f Z 3 4 5 

structure is established the greatest amplitude of the first oscillation exeeds the initial disturbance and is 

given by Urea x = 1.42"u 0. 

A numerical  exper iment  with fl = 10 -4 m3/sec  and ~? = 3 .10  -2 m2/sec  was ca r r i ed  out to ver i fy  whether 
the existence cr i ter ion for  an osci l la tory  s t ruc ture  in a shock wave (1.4) holds. Equation (1.4) is evidently 
not satisfied for such a high value of the v iscos i ty  coefficient. 

The resul ts  of a numerical  solution of Eq. (1.1) are  depicted in Fig. 2 (curves 1-4 correspond to 
t=0 ,  1.2, 2, and 3.2 sec). It is evident that a shock profile of monotonic s t ructure  forms.  Cri ter ion (1.4) 
yields a correct representation of the relation of the magnitudes of the parameters that characterize the 
establishment of an oscillatory structure to a shock wave. 

Let us now consider the evolution of an initial distribution of the form (2.2). 

The pulse length on a plateau section was taken as Ax = (x 0 -x I) = 2m a~Id x = (x 0 -x I) = ira. The initial 
stage of evolution of the disturbance (2.2) can be predicted proceeding on the basis of the results of the 
preceding problem. In the course of the propagation, a stationary oscillatory structure to the shock wave 
forms at the leading edge, a trailing edge slope also forms, and the leading edge interacts with the com- 
pression wave, as a result of which the typical front of a shock wave is formed, in turn forming a Wtri- 
angle r with the oscillations from a disturbance of finite extent. 

The evolution of the initial distribution (2.2) when Ax = 2m is depicted in Fig. 3 (the broken line cor- 
responds to t = 0 and the solid line, to t = 1.2 see). At time t = 1.2 sec the leading edge of the front has al- 
ready been formed but, unlike the case presented in Fig. 2, the form of the wave is not final. 

When Ax = 1 m at time t =3.6 sec (Fig. 4, solid line) a triangular profile, which can be taken as the 
steady-state structure of the shock wave, is formed (the broken line in Fig. 2 depicts the initial distribu- 
tion). The shock wave damps, that is, the amplitude of the leading edge decreases, due to the limitedness 
of energy applied to the initial disturbance and the presence of dissipation in the medium. In this system 
the total momentum is maintained, so that the ~area" of the disturbance remains constant while the shock 
wave profile spreads. The nahlre of the damping of the shock wave is depicted in Fig. 4. 

Shock waves have been considered [3] in a gas-liquid medium under a nondissipative formulation on 
the basis of the Korteweg-de Vries equation, which corresponds to Eq. (i.i) when ~? = 0. 

Figure 5 depicts the result of a numerical solution of Eq. (i.i) when ~?=0 (here t = 1.6 see). Evidently, 
for sufficiently long periods of time the disturbance is an expanding region filled with oscillations and no 
stationary structure of finite extent with a definite number of oscillations exists. 

Over the course of time a leading soliton forms whose amplitude reaches twice the height of the ini- 
tiai disturbance. Its velocity of propagation in a frame of reference moving at e 0 is 2u0/3. 

The results of a numerical analysis of the evolution of the step function (2.1) agree with analytical 
results [16, 17] obtained for l = O. 

We should emphasize that such structures of shock waves do not actually represent the process on 
the basis of the inviseous equation (i.i). To a still higher degree this is a matter of the use of a linear 
equation (i.i), in which the analysis of the structure of shock waves was practically constructed in [3] 
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and [8]. In this case the velocity of propagation of the disturbance is c0, 
and the maximal  amplitude of the oscil lat ions in the front is found equal to 
Urea x = 1.2 u 0 m / s e e  when ~ = 10 -4 m3/cm 2 (cf. Fig.  6 in which the solid line 
cor responds  to t = 2 sec,  the broken line to t = 0). The value of Urea x sub- 
stantialty depends on l. 

The investigations conducted showed that the fo rmat ion  of standing 
shock waves in a g a s - l i q u i d  medium with a c lear ly  expressed  front pos-  
sess ing an osc i l la tory  charac te r  or  monotonic s t ructure  is possible only in 
the p resence  of dissipation in the given model. The initial dis turbances of 
the fo rm of the step function (2.1) ensure  energy inflow, which compensates  
the effect of dissipative effects ,  leading finally to the es tabl ishment  of a 
s ta t ionary s t ruc ture  of the front of the shock wave. F o r  initial d is turbances  
bounded with respec t  to coordinate,  for example, of type (2.2), the wave 
damps beginning at some moment  of t ime. A s ta t ionary s t ruc ture  of the 
shock front over  some interval  of t ime is  possible for a sufficient extent of 

the initial dis turbance in the course  of the evolution untit the compress ion  wave approaches the leading 
edge (Figs. 3 and 4). The compress ion  wave then begins to smooth the leading edge and the typical t r i -  
angular  form of the shock wave is formed,  which damps over  the course of time. 

Calculations and experimental  investigations into the s t ructure  of a shock wave previously conducted 
[6, 7] cor respond to the periods of t ime during which the compress ion  wave is  far  f rom the leading edge, 
though the observed oscil lat ions in the front of the shock wave are not s teady-sta te  due to the small ex- 

h . . tent of the experimental  section. In no experiment  in ~nvestigatlng the osci l la tory  s t ruc ture  of a shock 
wave [8, 12] have there been observed standing shock waves. Apparently, available experimental  data on 
the s t ruc ture  of shock waves mus t  be compared to resul ts  obtained on the basis of solutions of nonstation- 
a ry  equations. 
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