DYNAMICS OF SHOCK WAVES IN A LIQUID
CONTAINING GAS BUBBLES

S. S. Kutateladze, V. E. Nakoryakov, UDC 532.593:532.529.5
V. V. Sobolev, and I. R. Shreiber

Results are presented of a numerical solution of the Korteweg—de Vries—Burgers equation
that describes the propagation and establishment process for a stationary structure to a
shock wave in a gas—liquid medium. Data are obtained on the time for the establishment
of a stationary structure of a shock wave, propagation velocity, and amplitude oscillations
in the front of the shock wave. Experiments are discussed on the basis of the results ob-
tained for the study of shock waves in a liquid containing gas bubbles.

1. Compression waves of finite amplitude in gas—liquid media have been experimentally and theo-
retically investigated [1-12].

It has been shown [5, 8] that it is possible for a weak shock wave possessing oscillatory structure to
form in a liquid with gas bubbles, given specified relationships between the effective mixture viscosity, in-
tensity of the disturbance, and bubble radius. The case of strong shock waves in such a medium has also
been considered [10].

The oscillatory structure of a standing shock wave was calculated in [6] and [8] on the basis of equa~
tions for a homogeneous single-velocity model assuming an adiabatic process within the suspension bub-
bles, and results have been presented [11] of a calculation of a standing wave based on a two-velocity model
of the medium assuming a nonpolytropic process.

It has been demonstrated [4, 5] that the evolution of longwave disturbances in a liquid containing gas
bubbles can be examined on the basis of the Korteweg—de Vries—Burgers equation, which is a model equa~-
tion for describing the propagation process for waves of finite amplitude in a medium with weak disper-
sion and dissipation [13],

Uy 4 U, — N Lyx + B Uxyae = 0 (1.1)

Here t is time, xisacoordinate, uis the velocity disturbance of the medium, 7 is the coefficient of
effective viscosity of the medium, 8=Ry%c,/6 ay{l—ay), (8 coz)—i/z is dispersion length, R, is the radius
of a stable bubble, c,=PY2 [p,a, (1--010)]'1/2 is a low-frequency approximation of the speed of sound in
the gas—liquid medium, p, is liquid density, and & is the initial gas content of the mixture by volume.

Equation (1.1) was written in a frame of reference moving at velocity ¢). When dissipation is due
solely to viscous losses at the bubble—liquid boundary, the coefficient of effective viscosity of the mix-
ture has the form

n=2v/3 0, (1.2)
where v is the kinematic viscosity coefficient of the liquid. A remark regarding the coefficient in (1.2) can
be found in [9]; that is, the actual dissipation coefficient in the mixture exceeds by a factor of 20 the coef-

ficient calculated using Eq. (1.2). The coefficient n can be calculated more precisely preceding on the
basis of results of [14]:

1 =200 R?/60a, 1— ay)
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F, where & is the damping decrement, which may be represented in the form

/ - o of a sum of decrements due to thermal dissipation, acoustic radiation

) \ losses, and losses calculated in [14]; w is the ripple frequency of a bub-
g P ble, which for weak shock waves is close to the resonance frequency of

Fig. 1 the bubble calculated using the equilibrium values of pressure and radius.

The contribution to dissipation of losses caused by thermal effects
7 and radiation may be substantial.

‘ The stationary solutions of Eq. (1.1} of the form u=u(x —Vt), which
Y K 4 describes the structure of the front, are obtained by integrating the ordi-
7 . - nary differential equation

Y s 5 7
Fig. 2 Bu” —nu" +u (u—V)=0 (1.3

where V =Au/2, Au being the velocity discontinuity in the shock wave.

The existence criterion for shock waves with oscillatory structure, following Eq. (1.3}, has the
form [13]

(2 BA w2 <1 {1.4)

The criterion {1.4) cannot hold in the course of the establishment of a standing front. The penetra-
tion probability for a shock wave with oscillatory structure into a gas—liquid mixture has been confirmed
experimentally [4, 6-8, 10, 12].

It has been proposed [11] that times somewhat greater than were realized in these experiments are
required for a shock wave to atfain a standing structure.

In this work we shall investigate the process by which a shock wave is established and compare it to
available experimental results.

9. The process by which a shock wave is established was studied on the basis of the decay problem
for an arbitrary discontinuity by means of a numerical integration of Eq. (1.1).

The initial condition for Eq. (1.1) was selected in the form of a step function of the form

u(x, 0) = u, mlsec, z < g (2.1}
u(z, 0) = ugexp [— (z — %) / €], >z,

The slope of the discontinuity front can be regulated by varying the parameter. The coordinates and
form of the step function are connected by the broken line in Fig. 1. Moreover, numerical experiments
with finite initial distributions of the form

ulz, 0) = ugexpl—(a — ) "o, 0z
u(z, 0) = uy, 2, < z < 2 -
u(xz, 0) = ug exp [— (@ — 20)? /&%), 2 > 1, (2.2)

were carried out.
The initial disturbance {2.1) approximately corresponds to the conditions of previous experiments

(8] and the distribution of the form (2.2), to other experiments {4, 6, 7], where the high~pressure chamber
had limited volume.

The dispersion and dissipation coefficients were 3= 107 m®/sec and =103 m?/sec. These values
of the coefficients roughly correspond to the conditions of previous experiments {4, 6-8] (u,=1 m/sec, 1=
0.08 m, 1;=0.04 m, and 1,=0.4 m).

The results of the calculation are presented in dimensional form to facilitate their comparison with
the experimental results,

Equation (1.1) was approximated by an explicit three-layer finite-difference scheme of second order
with respect to coordinate and time. The integration step was as follows: for coordinate, h=0.01 m and
for time, T=0.8 - 1073 sec.

Results are presented in Fig. 1 of a numerical integration of Eq. (1.1) with initial condition (2.1); the
disturbance profile is depicted for t=2 sec. A standing shock wave with oscillatory structure was estab~
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| lished in about 1,2 sec for a height of a step uy=1 msec for these values
1 7 W‘ f ! ) of the parameters. The velocity of the standing shock wave in the frame
7 of reference moving at velocity ¢y was 0.5 uy, which agrees with the re-

/] A
4 J ¥
‘ Fi ' 3 sults of an investigation of Eq. (1.3) [13, 15]. The distance x =(c;+0.5 upt
& in which a stationary structure of the shock wave is established was mea-~
sured to tens of meters.
i ! ] We can agree with [11] that only nonstationary shock waves have
7 } been investigated in all previous experiments.
L —— | g D p s
! z J 4 g It is evident from the results of a numerical integration of Eq. (1.1)

Fig. 4 that the oscillations appearing in the front of the shock wave in the course
of the evolution of the initial discontinuity have higher amplitudes than at
the moment when the stationary profile is established.

The oscillations are smoothed as the shock wave propagates, and at the moment when the stationary
structure is established the greatest amplitude of the first oscillation exeeds the initial disturbance and is

given by upyax = 1.42 ug.
A numerical experiment with 8=10"* m®/sec and n=3- 1072 m2/sec was carried out to verify whether

the existence criterion for an oscillatory structure in a shock wave (1.4) holds. Equation (1.4) is evidently
not satisfied for such a high value of the viscosity coefficient.

The results of a numerical solution of Eq. (1.1) are depicted in Fig. 2 (curves 1-4 correspond to
t=0, 1.2, 2, and 3.2 sec). It is evident that a shock profile of monotonic structure forms. Criterion (1.4)
yields a correct representation of the relation of the magnitudes of the parameters that characterize the
establishment of an oscillatory structure to a shock wave,

Let us now consider the evolution of an initial distribution of the form (2.2).

The pulse length on a plateau section was taken as Ax=(xy ~x,) =2m and x =(xy —~x;) =1m. The initial
stage of evolution of the disturbance (2.2) can be predicted proceeding on the basis of the results of the
preceding problem. In the course of the propagation, a stationary oscillatory structure to the shock wave
forms at the leading edge, a trailing edge slope also forms, and the leading edge interacts with the com-~
pression wave, as a result of which the typical front of a shock wave is formed, in turn forming a ®tri-
angle™ with the oscillations from a disturbance of finite extent.

The evolution of the initial distribution (2.2) when Ax =2m is depicted in Fig. 3 (the broken line cor-
responds to t=0 and the solid line, to t=1.2 sec). At time t=1.2 sec the leading edge of the front has al-
ready been formed but, unlike the case presented in Fig. 2, the form of the wave is not final.

When Ax=1 m at time t=3.6 sec (Fig. 4, solid line) a triangular profile, which can be taken as the
steady-state structure of the shock wave, is formed (the broken line in Fig. 2 depicts the initial distribu-
tion). The shock wave damps, that is, the amplitude of the leading edge decreases, due to the limitedness
of energy applied to the initial disturbance and the presence of dissipation in the medium. In this system
the total momentum is maintained, so that the "area" of the disturbance remains constant while the shock
wave profile spreads. The nature of the damping of the shock wave is depicted in Fig, 4.

Shock waves have been considered [3] in a gas—liquid medium under a nondissipative formulation on
the basis of the Korteweg—de Vries equation, which corresponds to Eg. (1.1) when n=0.

Figure 5 depicts the result of a numerical solution of Eq. (1.1) when n=0 (here t=1.6 sec). Evidently,
for sufficiently long periods of time the disturbance is an expanding region filled with oscillations and no
stationary structure of finite extent with a definite number of oscillations exists.

Over the course of time a leading soliton forms whose amplitude reaches twice the height of the ini~
tial disturbance. Its velocity of propagation in a frame of reference moving at c; is 2uy/3.

The results of a numerical analysis of the evolution of the step function (2.1) agree with analytical
results [16, 17] obtained for 7=0.

We should emphasize that such structures of shock waves do not actually represent the process on
the basis of the inviscous equation (1.1). To a still higher degree this is a matter of the use of a linear
equation (1.1), in which the analysis of the structure of shock waves was practically constructed in [3]

640



and [8]. In this case the velocity of propagation of the disturbance is ¢y,
and the maximal amplitude of the oscillations in the front is found equal to
Umax = 1.2 4y m/sec when 8 =10™* m?/cm? {cf. Fig. 6 in which the solid line
corresponds to t=2 sec, the broken line to t=0). The value of uy, 45 sub~
stantially depends on 1.

The investigations conducted showed that the formation of standing
shock waves in a gas—liquid medium with a clearly expressed front pos-

4 . . . . . :
j4 sessing an oscillatory character or monotonic structure is possible only in
] the presence of dissipation in the given moedel. The initial disturbances of
2\ . . .
MRS A 3 the form of the step function (2.1) ensure energy inflow, which compensates
| \\ the effect of dissipative effects, leading finally to the establishment of a
‘L—* 5 ud = stationary structure of the front of the shock wave. For initial disturbances
Fig. 6 bounded with respect to coordinate, for example, of type (2.2), the wave

damps beginning at some moment of time. A stationary structure of the

shock front over some interval of time is possible for a sufficient extent of
the initial disturbance in the course of the evolufion until the compression wave approaches the leading
edge (Figs. 3 and 4). The compression wave then begins to smooth the leading edge and the typical tri-
angular form of the shock wave is formed, which damps over the course of time.

Calculations and experimental investigations into the structure of a shock wave previously conducted
{6, 7] correspond to the periods of time during which the compression wave is far from the leading edge,
though the observed oscillations in the front of the shock wave are not steady-state due to the small ex~
tent of the experimental section. In no experiment in Tnvestigating the oscillatory structure of a shock
wave [8, 12] have there been observed standing shock waves. Apparentily, available experimental data on
the structure of shock waves must be compared to results obtained on the basis of solutions of nonstation~
ary equations.
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